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Abstract This paper considers the value iteration algorithms of stochastic zero-sum linear quadratic
games with unkown dynamics. On-policy and off-policy learning algorithms are developed to solve the
stochastic zero-sum games, where the system dynamics is not required. By analyzing the value function
iterations, the convergence of the model-based algorithm is shown. The equivalence of several types
of value iteration algorithms is established. The effectiveness of model-free algorithms is demonstrated
by a numerical example.

Keywords Approximate dynamic programming, Stochastic zero-sum games, Value iteration.

1 Introduction
The zero-sum game is an important type of game, describing the decision-making process

of two players [1], where one player’s gain is equal to the other player’s loss and hence the
total gain/loss for both players always equal to zero. This type of game is widely used in
the real world, such as economic competition, military strategy, sports competitions, and so
on. Zero-sum games are closely related to H∞ optimal control [2], which is a robust optimal
control method that relies on solving the Hamilton-Jacobi-Bellman (HJB) equation or the
Riccati equation. For nonlinear systems, one requires to solve the HJB equation, while for
linear systems, it is generally needed to solve the Riccati equation [3].
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In recent years, there has been tremendous interest in reinforcement learning. Approximate
dynamic programming (ADP) is a typical class of practical reinforcement learning methods for
obtaining the optimal control solution without the knowledge of system dynamics [4]. The ADP
method was proposed by [5], [6] and others, which aims to determine the optimal control solution
by finding an approximate value function. Compared with traditional dynamic programming,
ADP can circumvent the intractable computational problems [7].

For ADP, the iterative procedure involves two parts: the policy evaluation and the policy
improvement [8]. In general, ADP can be divided into value iteration [9] and policy iteration [4].
For policy iteration, the iteration starts with a stabilizing initial control, while value iteration
can be initiated with an arbitrary policy [10]. The convergence of the value iteration method
was discussed in [11]. When the iteration sequence begins with a zero initial value function, it
will converge to the optimal performance index.

Most policy iteration and value iteration methods require some knowledge of the model
parameters. Accurately determining the model parameters is a challenging and time-consuming
process, especially in a complex environment. Consequently, model-free methods have been
proposed and applied for solving the problem in an uncertain environment (e.g. [12], [13], [14]).
In practice, it is widely applied in complex situations, like handling variable road conditions
in autonomous driving. In [4], the learning algorithm is implemented only using measured
input/output data of the system. In [15], the policy optimization methods are developed to
obtain the Nash equilibria. A novel policy iteration approach was developed in [16], which solves
the algebraic Riccati equation using the online information. In [17], an off-policy algorithm is
proposed using real data.

The work mentioned above mostly focused on deterministic models, which have already
been widely studied and applied in numerous fields. However, due to the inherent uncertainty
and complexity of stochastic systems, different methods are required to be developed. In this
context, model-free reinforcement learning has gained popularity for stochastic systems, as
it avoids model bias issues [14]. In [18], [19], the ADP algorithm is developed to solve the
stochastic optimal control problem, which focuses on the dynamically perturbed stochastic
systems. [20] designs a reinforcement learning method to solve the continuous-time stochastic
linear quadratic problem, where the performance is simulated by computing the average value
based on multiple sample paths.

However, there are few related works regarding the design of ADP methods for discrete-time
stochastic systems.

The main contribution of the paper includes the following two-fold:

• In this paper, two model-free value iteration algorithms are developed to solve the discrete-
time infinite-horizon stochastic zero-sum linear quadratic games, without using system
dynamics information.

• The convergence of the value function iterations is first presented for the model-based
value iteration algorithm, and then the convergence of the model-free algorithms is given
by establishing the equivalence of model-based and model-free value iteration algorithms.
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The equivalence of on-policy and off-policy model-free value iteration algorithms is further
shown.

Notation. For matrix X = (xij)n×n, tr(X) is trace, diag(·) represents a diagonal matrix.
vech(X) ≜ [x11, x12, ..., x1n, x22, x23, ..., xn−1,n, xn,n]

T , vecs(X) ≜ [x11, 2x12, ..., 2x1n, x22, 2x23, ...,

2xn−1,n, xn,n]
T . L is Banach space.

2 Problem Formulation
Consider a discrete-time stochastic system as follows:

xk+1 = Axk +Buk + Cwk + (Dxk + Euk + Fwk)dk, (1)

where xk ∈ Rn is the state, uk ∈ Rm1 , wk ∈ Rm2 are the control input and disturbance input,
respectively. dk ∈ R1 follows the standard normal distribution. The matrices A,B,C,D,E, F
have proper dimensions. The associated cost function is given by

J(xk) =
∞∑
i=k

ri−kE[c(xi, ui, wi)], (2)

where r is discount factor. c(xi, ui, wi) = xTi Rxi + uTi ui − γ2wT
i wi.

The zero-sum game problem is to find proper uk and vk to minmax the cost function (2).
Thus, the value fuction is given by

V (xk) = min
uk

max
wk

J(xk), (3)

According to Bellman’s optimality principle [4], [14], the value function may be determined
using the HJB equation

V (xk) = min
uk

max
wk

E[c(xk, uk, wk)] + rV (xk+1). (4)

Lemma 2.1 The value function can be rewritten as

V (xk) = E(xTk Pxk). (5)

where P ≥ 0 satisfies the algebraic Riccati equation (6)

P =R+ rATPA+ rDTPD − [r(ATPB +DTPE) r(ATPC +DTPF )]

×

I + r(BTPB + ETPE) r(BTPC + ETPF )

r(CTPB + FTPE) r(CTPC + FTPF )− γ2I

−1 r(BTPA+ ETPD)

r(CTPA+ FTPD)

 . (6)

Proof Since

E(xTk+1Pxk+1) = E[E(xTk+1Pxk+1|xk)]

=E
[
xTk [(A+BL+ CK)TP (A+BL+ CK) + (D + EL+ FK)TP (D + EL+ FK)]xk

]
,
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we have
rE(xTk+1Pxk+1)− E(xTk Pxk)

=− E[xTk (R+ LTL− γ2KTK)xk]

=− E[c(xk, uk, wk)].

This can be written as

E[c(xk, uk, wk)] = E(xTk Pxk)− rE(xTk+1Pxk+1). (7)

Substituting (7) into (3) results in

V (xk) =
∞∑
i=k

ri−kE[c(xi, ui, wi)]

= E(xTk Pxk)− lim
i→∞

riE(xTk+iPxk+i)

= E(xTk Pxk).

■

The corresponding Hamiltonian function is defined as

H(xk, L,K) = E[c(xk, uk, wk)] + rE(xTk+1Pxk+1)− E(xTk Pxk).

By the first-order necessary condition for optimality [14], we obtain the minimax gains

L = [I + r(BTPB + ETPE)− rCTPB × (r(CTPC + FTPF )− γ2)−1rBTPC]−1

× [−rBTPA+ rCTPA(r(CTPC + FTPF )− γ2)−1rBTPC],

K = [r(CTPC + FTPF )− γ2 − rBTPC(I + r(BTPB + ETPE))−1rCTPB]−1

× [−rCTPA+ rBTPA(I + r(BTPB + ETPE))−1rCTPB].

(8)

The saddle-point policies can be determined by{
uk = Lxk,

wk = Kxk.

Remark 2.2 The Riccati equation (6) can be expressed as the Lyapunov equation (9)

P =R+ LTL− γ2KTK + r[(A+BL+ CK)TP (A+BL+ CK)

+ (D + EL+ FK)TP (D + EL+ FK)].
(9)

Inserting the minimax gains (8) into (9), we get the Riccati equation (6).

The existence of a solution to the zero-sum games is guaranteed by Theorem 2.1 of [21].
Assume (C,A) is detectable and (A,B) is stabilizable. Then the two-person zero-sum games
exist solution if and only if I−C∗[LP+

0 +P+
0 L∗−P+

0 L∗M0LP+
0 ]C > 0, where P+

0 is the positive
definite solution when wk ≡ 0, and T ∗ is the conjugate transpose of T . Here, the operators L
and L∗ are defined as follows: (Lf)(t) =

∫∞
t
eF

′(s−t)f(s) ds, (L∗f)(t) =
∫ t

0
eF (t−s)f(s) ds.
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We now turn to develop the model-based value iteration algorithm, including policy evalu-
ation

P (i) = R+ (L(i−1))TL(i−1) − γ2(K(i−1))TK(i−1)

+ r[(A+BL(i−1)+CK(i−1))TP (i−1)(A+BL(i−1)+CK(i−1))

+ (D+EL(i−1)+FK(i−1))TP (i−1)(D+EL(i−1)+FK(i−1))],

(10)

and policy improvementI + r(BTP (i)B + ETP (i)E) r(BTP (i)C + ETP (i)F )

r(CTP (i)B + FTP (i)E) r(CTP (i)C + FTP (i)F )− γ2


×

 L(i+1)

K(i+1)

 =

 −r(BTP (i)A+ ETP (i)D)

−r(CTP (i)A+ FTP (i)D)

 .
(11)

Algorithm 1: Model-based value iteration
Input: Initial state x0, simulation stop time kend, ε.
Output: The estimation of minimax gains L̂, K̂.

1 Initialization:i = 1, L(1), K(1)

2 for i = 2 : kend do
3 Obtain P (i) according to (10).
4 Update L(i+1), K(i+1) as (11) or (8).
5 if ||L(i+1) − L(i)|| < ε and ||K(i+1) −K(i)|| < ε, then
6 Break
7 else
8 i = i+ 1

9 end
10 end
11 L̂ = L(i+1), K̂ = K(i+1)

The convergence of model-based value iteration (Algorithm 1) is given in the following
lemma.

Lemma 2.3 Assume that there exist 1 ≤ β < ∞, 0 ≤ m ≤ 1, and 1 ≤ m < ∞
such that 0 ≤ rV ∗(xk+1) ≤ βE[c(xk, uk, wk)] and 0 ≤ mV ∗(xk) ≤ V0(xk) ≤ mV ∗(xk). The
sequences {Li}, {Ki}, {Vi(·)} are iteratively updated using the model-based value iteration algo-
rithm. Then, the value function Vi(·) converges towards V ∗(·) according to the ensuing set of
inequalities: [

1 +
m− 1

(1 + β−1)i

]
V ∗(x) ≤ Vi(x) ≤

[
1 +

m− 1

(1 + β−1)i

]
V ∗(x). (12)

Then,
lim
i→∞

Vi(xk) = V ∗(xk), lim
i→∞

Li = L∗, lim
i→∞

Ki = K∗.
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6 GUO LIANGYUAN · WANG BING-CHANG · ZHANG JI-FENG

Proof Since 0 ≤ rV ∗(xk+1) ≤ βE[c(xk, uk, wk)] and 0 ≤ mV ∗(xk) ≤ V0(xk) ≤ mV ∗(xk),

we have
m− 1

1 + β

{
βE[c(xk, uk, wk)]− rV ∗(xk+1)

}
≤ 0,

m− 1

1 + β

{
βE[c(xk, uk, wk)]− rV ∗(xk+1)

}
≥ 0.

For i = 0, (12) holds. Let i = 1,

V1(xk) = E[c(xk, uk, wk)] + rV0(xk+1)

≤ E[c(xk, uk, wk)] + rmV ∗(xk+1)

≤ E[c(xk, uk, wk)] + rmV ∗(xk+1)

+
m− 1

1 + β

{
βE[c(xk, uk, wk)]− rV ∗(xk+1)

}
=

1 +mβ

1 + β

[
E[c(xk, uk, wk)] + rV ∗(xk+1)

]
=

[
1 +

m− 1

1 + β−1

]
V ∗(xk).

(13)

Suppose for i = j − 1, j = 1, 2, 3, ..., the conclusion still holds, i.e.

Vj−1(xk) ≤
[
1 +

m− 1

(1 + β−1)j−1

]
V ∗(xk).

Then, for i = j, one has

Vj(xk) = E[c(xk, uk, wk)] + rVj−1(xk+1)

≤ E[c(xk, uk, wk)] + r

[
1 +

m− 1

(1 + β−1)j−1

]
V ∗(xk+1)

≤ E[c(xk, uk, wk)] + r

[
1 +

m− 1

(1 + β−1)j−1

]
V ∗(xk+1)

+
(m− 1)βj−1

(1 + β)j

{
βE[c(xk, uk, wk)]− rV ∗(xk+1)

}
=

[
1 +

(m− 1)βj

(1 + β)j

]
E[c(xk, uk, wk)]

+ r

[
1 +

(m− 1)

(1 + β−1)j−1
− (m− 1)βj−1

(1 + β)j

]
V ∗(xk+1)

=

[
1 +

m− 1

(1 + β−1)j

] [
E[c(xk, uk, wk)] + rV ∗(xk+1)

]
=

[
1 +

m− 1

(1 + β−1)j

]
V ∗(xk).

The right hand of the inequality (12) is proved.
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As for the left hand of (12), let i = 1,

V1(xk) = E[c(xk, uk, wk)] + rV0(xk+1)

≥ E[c(xk, uk, wk)] + rmV ∗(xk+1)

≥ E[c(xk, uk, wk)] + rmV ∗(xk+1)

+
m− 1

1 + β

{
βE[c(xk, uk, wk)]− rV ∗(xk+1)

}
=

1 +mβ

1 + β

[
E[c(xk, uk, wk)] + rV ∗(xk+1)

]
=

[
1 +

m− 1

1 + β−1

]
V ∗(xk).

Suppose for i = j − 1, j = 1, 2, 3, ..., the conclusion still holds, i.e.

Vj−1(xk) ≥
[
1 +

m− 1

(1 + β−1)j−1

]
V ∗(xk).

Then, for i = j, one has

Vj(xk) = E[c(xk, uk, wk)] + rVj−1(xk+1)

≥ E[c(xk, uk, wk)] + r

[
1 +

m− 1

(1 + β−1)j−1

]
V ∗(xk+1)

≥ E[c(xk, uk, wk)] + r

[
1 +

m− 1

(1 + β−1)j−1

]
V ∗(xk+1)

+
(m− 1)βj−1

(1 + β)j

{
βE[c(xk, uk, wk)]− rV ∗(xk+1)

}
=

[
1 +

(m− 1)βj

(1 + β)j

]
E[c(xk, uk, wk)]

+ r

[
1 +

(m− 1)

(1 + β−1)j−1
− (m− 1)βj−1

(1 + β)j

]
V ∗(xk+1)

=

[
1 +

m− 1

(1 + β−1)j

] [
E[c(xk, uk, wk)] + rV ∗(xk+1)

]
=

[
1 +

m− 1

(1 + β−1)j

]
V ∗(xk).

The left hand of the inequality (12) is proved.
By taking the limit of inequality (12), one has

lim
i→∞

{[
1 +

m− 1

(1 + β−1)i

]
V ∗(xk)

}
= V ∗(xk),

lim
i→∞

{[
1 +

m− 1

(1 + β−1)i

]
V ∗(xk)

}
= V ∗(xk).

Therefore, limi→∞ Vi(xk) = V ∗(xk). Combining V ∗(xk) and the limit of (11), one has L∞ =

L∗,K∞ = K∗. This completes the proof. ■

Remark 2.4 Lemma 2.3 is proposed for stochastic situations. A similar result was pro-
vided by [22], which is used for the deterministic nonlinear systems.
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3 Model-free On-policy value iteration Algorithm
Define the Q-function

Q(xk, uk, wk) ≜ E[c(xk, uk, wk)] + rV (xk+1), (14)

or more compactly as
Q(xk, uk, wk) = E(zTkHzk), (15)

where zk ≜ [xTk uTk wT
k ]

T , H =

[
Hxx Hxu Hxw

Hux Huu Huw

Hwx Hwu Hww

]
≜

[
r(ATPA+DTPD)+R r(ATPB+DTPE) r(ATPC+DTPF )

r(BTPA+ETPD) r(BTPB+ETPE)+I r(BTPC+ETPF )

r(CTPA+FTPD) r(CTPB+FTPE) −γ2+r(CTPC+FTPF )

]
.

According to the first-order necessary condition for optimality [14], one has

L = [(Huu+H
T
uu)− (HT

uw+Hwu)(Hww+H
T
ww)

−1(HT
wu+Huw)]

−1

× [(HT
xw+Hwx)(Hww+H

T
ww)

−1(Huw+H
T
wu)− (Hux+H

T
xu)],

K = [(Hww+H
T
ww)− (HT

wu+Huw)(Huu+H
T
uu)

−1(HT
uw+Hwu)]

−1

× [(HT
xu+Hux)(Huu+H

T
uu)

−1(HT
uw+Hwu)− (HT

xw+Hwx)].

(16)

From (16), the iteration can learn the minmax gains without relying on the knowledge of system
dynamics. Next, we develop a model-free value iteration method to learn the Q-function (i.e.
the H matrix):

Q(i+1)(xk, u
(i)
k , w

(i)
k ) = E[c(xk, u(i)k , w

(i)
k )] + rQ(i)(xk+1, u

(i)
k , w

(i)
k ). (17)

Note that there is no need to solve the Riccati equations or Lyapunov equations in each iteration.
Define the following iteration, including policy evaluation

E
(
vech

(
z
(i)
k (z

(i)
k )T

))T
h(i+1) = E

(
c(xk, u

(i)
k , w

(i)
k )

)
+
(
rE

(
vech

(
z
(i)
k+1(z

(i)
k+1)

T
)T ))

h(i), (18)

and policy improvement

L(i+1) = [(H(i+1)
uu +H(i+1)

uu

T
)− (H(i+1)

uw

T
+H(i+1)

wu )(H(i+1)
ww +H(i+1)

ww

T
)−1

× (H(i+1)
wu

T
+H(i+1)

uw )]−1[(H(i+1)
xw

T
+H(i+1)

wx )(H(i+1)
ww +H(i+1)

ww

T
)−1

× (H(i+1)
uw +H(i+1)

wu

T
)− (H(i+1)

ux +H(i+1)
xu

T
)],

K(i+1) = [(H(i+1)
ww +H(i+1)

ww

T
)− (H(i+1)

wu

T
+H(i+1)

uw )(H(i+1)
uu +H(i+1)

uu

T
)−1

× (H(i+1)
uw

T
+H(i+1)

wu )]−1[(H(i+1)
xu

T
+H(i+1)

ux )(H(i+1)
uu +H(i+1)

uu

T
)−1

× (H(i+1)
uw

T
+H(i+1)

wu )− (H(i+1)
xw

T
+H(i+1)

wx )].

(19)

Then, the iteration of policy evaluation can be rewritten as

E(Φ(i))Th(i+1) = E(Y (i)) +
(
rE(Φ̃(i))T

)
h(i),

where 

ϕ
(i)
k = vech(z

(i)
k (z

(i)
k )T ),

Φ(i) = [ϕ
(i)
0 , ϕ

(i)
1 , ..., ϕ

(i)
N ],

Φ̃(i) = [ϕ
(i)
1 , ϕ

(i)
1 , ..., ϕ

(i)
N+1],

Y (i) = [c(x0, u
(i)
0 , w

(i)
0 ), c(x1, u

(i)
1 , w

(i)
1 ), ..., c(xN , u

(i)
N , w

(i)
N )].
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Using the least squares method, we have the estimate of h(i)

h(i+1) =
(
E(Φ(i))E(Φ(i))T

)−1

E(Φ(i))
[
E(Y (i)) +

(
rE(Φ̃(i))T

)
h(i)

]
. (20)

The model-free Q-learning value iteration algorithm is concluded in Algorithm 2.

Algorithm 2: On-policy model-free Q-learning value iteration
Input: Discount factor r, least squares data volume N , x0, kend, ε.
Output: The estimation of minimax gain L̂, K̂.

1 initialization: i = 0, L0, K0, h0 = v(H0) = 0,
2 for k = 1 : kend do
3 Collect sample points for batch i (N sample points per batch).
4 Policy evaluation:
5 Estimate h(i) according to (20).
6 H(i) = f(h(i)).
7 Policy improvement:
8 Use H(i) update L(i+1), K(i+1) as (19).
9 if ||L(i+1) − L(i)|| < ε and ||K(i+1) −K(i)|| < ε, then

10 Break
11 else
12 i = i+ 1

13 end
14 end
15 L̂ = L(i+1), K̂ = K(i+1)

The equivalence between model-free on-policy value iteration algorithm and model-based
algorithm is given in the following theorem.

Theorem 3.1 Assume that there exists a positive definite solution to the ARE (6). Then,
the model-free on-policy value iteration algorithm (Algorithm 2) and the model-based algorithm
(Algorithm 1) are equivalent.

Proof Combining (4), (5), (14), and (15), we can obtain

E(zTkHzk) = E(xTk Pxk), (21)

By vectorization, (21) becomes

E[vech(xkxTk )]T vecs(K̃THK̃) = E[vech(xkxTk )]T vecs(P ),

which can be written as
K̃THK̃ = P, (22)

where vecs(X) = [x11, 2x12, ..., 2x1n, x22, 2x23, ..., 2xn−1,n,xn,n]
T , K̃ ≜ [I LT KT ]T .
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Taking (17), (5), (14), and (22) into consideration, we have the following iteration equaiton

E((z(i)k )TH(i+1)z
(i)
k ) = E[c(xk, u(i)k , w

(i)
k )] + rE((z(i)k+1)

TH(i)z
(i)
k+1). (23)

From (23), we have (18). Thus, the iterative equations (18)-(19) and (10)-(11) are equivalent.
The proof of the theorem is now completed. ■

Remark 3.2 Notice that in Theorem 3.1, the equivalence of the model-free on-policy
value iteration and the model-based value iteration is shown. By Lemma 2.3, we can obtain
the convergence of model-free on-policy value iteration algorithm.

4 Model-free Off-policy value iteration Algorithm
For the off-policy situation, the Q-function is defined as

Q(xk, u
off , woff ) = E[c(xk, uoff , woff )] + rV (xk+1), (24)

where uoff , woff are the arbitrary behavior policies. When the policies are optimal, we have
the optimal Q-function

Q∗(xk, u
off , woff ) ≜ Q(u∗,w∗)(xk, u

off , woff ),

which can be written as

Q(i)(xk, u
off , woff ) = E[c(xk, uoff , woff )] + rV (i)(xk+1)

= E[c(xk, uoff , woff )] + rE(xTk+1P
(i)xk+1)

= E(zTkH(i)zk),

(25)

where zk ≜ [xTk uoff
T
woffT ]T . Additionally, the value function is equal to the Q-function [9],

we get

E(xTP (i)x) = E
(

x

u(i)(x)

w(i)(x)


T

H(i)


x

u(i)(x)

w(i)(x)

)
,

i.e.

P (i) =
(

I

L(i)

K(i)


T

H(i)


I

L(i)

K(i)

)
. (26)

Combining (17), (5), (24), and (26), one has

E(zTkH(i+1)zk) = E[c(xk, uoff , woff )] + rE
(

xk+1

L(i)xk+1

K(i)xk+1


T

H(i)


xk+1

L(i)xk+1

K(i)xk+1

)
.
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This can be written as

E[vech(zkzTk )]Th(i+1) = E[c(xk, uoff , woff )] + r E[vech(


xk+1

L(i)xk+1

K(i)xk+1




xk+1

L(i)xk+1

K(i)xk+1


T

)]Th(i).

(27)
We use the arbitrary behavior policies to generate enough data points and collect them. By
(27), we can obtain

E(Φ(i))Th(i+1) = E(Y (i)) + E(Ψ(i))Th(i),

where 

ϕ
(i)
k = vech(zkz

T
k ),

ψ
(i)
k = r vech(


xk+1

L(i)xk+1

K(i)xk+1




xk+1

L(i)xk+1

K(i)xk+1


T

),

Φ(i) = [ϕ
(i)
0 , ϕ

(i)
1 , ..., ϕ

(i)
N ],

Ψ(i) = [ψ
(i)
0 , ψ

(i)
1 , ..., ψ

(i)
N ],

Y (i) = [c(x0, u
off , woff ), c(x1, u

off , woff ), ..., c(xN , u
off , woff )].

The estimate of h(i) can be computed with the following least-square scheme

h(i+1) =
[
E(Φ(i))E(Φ(i))T

]−1

E(Φ(i))
[
E(Y (i)) + E(Ψ(i))Th(i)

]
. (28)

The equivalence between the model-free off-policy value iteration algorithm and the model-
based algorithm is given in the following theorem.

Theorem 4.1 Assume that there exists a positive definite solution to the ARE (6). Then,
the off-policy value iteration algorithm (Algorithm 3) and the model-based algorithm (Algorithm
1) are equivalent.

Proof Combining (27) and (25), one has

P (i+1) =
(

I

L(i)

K(i)


T

H(i)


I

L(i)

K(i)

)
. (29)

Note that (29) is equivalent to (10). Then, the iterative equations (27)-(19) and (10)-(11) are
equivalent. This completes the proof. ■

Remark 4.2 In Theorem 4.1, the equivalence of the model-free off-policy value iteration
and the model-based value iteration is shown. By Theorem 3.1, we establish the equivalence of
the model-free off-policy value iteration and the model-based value iteration algorithms. This
together with Theorem 4.1 implies the equivalence of the off-policy and on-policy model-free
value iteration algorithms.
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Algorithm 3: Off-policy model-free Q-learning value iteration
Input: Discount factor r, least squares data volume N , x0, kend, ε.
Output: The estimation of minimax gain L̂, K̂.

1 initialization: i = 0, L0, K0, h0 = v(H0) = 0,
2 for k = 1 : kend do
3 Collect sample points for batch i by behavior policy uoff and woff (N sample

points per batch).
4 Policy evaluation:
5 Estimate h(i) according to (28).
6 H(i) = f(h(i)).
7 Policy improvement:
8 Use H(i) update L(i+1), K(i+1) as (19).
9 if ||L(i+1) − L(i)|| < ε and ||K(i+1) −K(i)|| < ε, then

10 Break
11 else
12 i = i+ 1

13 end
14 end
15 L̂ = L(i+1), K̂ = K(i+1)

5 Simulation Study
To demonstrate the effectiveness of the proposed algorithms in a stochastic case, we present

a simulation example that focuses on the design of the F-16 aircraft autopilot [9]. Consider a
system with following parameters: γ = 1, r = 0.001, R = diag (1, 1, 1) , x0 = [10 5 − 2]T ,

B =
[
−0.00150808 −0.0096 0.867345

]T
, C =

[
0.00951892 0.00038373 0

]T
,

A =


0.906488 0.0816012 −0.0005

0.0741349 0.90121 −0.000708383

0 0 0.132655

 .
By using Algorithm 1, after two iterations, we obtain

P ∗ =


1.0016609406 0.0002862002 −0.0000009506

0.0002862002 1.0016441664 −0.0000012947

−0.0000009506 −0.0000012947 1.0000351456

 .
By Algorithm 2, after seven iterations, we have
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P̂ ∗ =


0.9925631866 0.0385674270 −0.0160499187

0.0385674270 0.9665930972 0.0305363862

−0.0160499187 0.0305363862 1.00016064817

 .
By Algorithm 3, after seven iterations, we obtain

P̂ ∗ =


1.2180699288 −0.1239634402 0.0124082424

−0.1239634402 1.0695248090 −0.0080062414

0.0124082424 −0.0080062414 1.0002895411

 .
These indicate that the proposed algorithms in this paper perform well.

The iterative result of the on-policy value iteration algorithm (Algorithm 2) is demonstrated
in Figures 1-2, including the state trajectories and the iterative curve of Pi. Meanwhile, the
off-policy value iteration algorithm (Algorithm 3) is demonstrated in Figures 3-4. These figures
show that both Algorithms 2 and 3 are convergent.
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Figure 1: State trajectories (Algorithm 2).
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Figure 2: The iterative curve of Pi (Algorithm 2).

Page 13 of 16

https://mc03.manuscriptcentral.com/jssc

Journal of Systems Science & Complexity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 GUO LIANGYUAN · WANG BING-CHANG · ZHANG JI-FENG

0 5 10 15 20 25 30

-20

0

20

x 1

0 5 10 15 20 25 30

-20

0

20

x 2

0 5 10 15 20 25 30
The time step

-10

0

10

x 3

Figure 3: State trajectories (Algorithm 3).
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Figure 4: The iterative curve of Pi (Algorithm 3).

6 Conclusion
In this paper, two model-free value iteration algorithms have been developed to solve the

discrete-time infinite-horizon stochastic zero-sum linear quadratic games. The convergence of
the algorithms is provided. By the model-free algorithms, two saddle-point policies are obtained
by using interactive data without system parameters. A numerical example is provided to
demonstrate the performance of proposed algorithms.
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